landslide susceptibility mapping on a global scale using the method of logistic regression

Clicks: 171
ID: 183273
2017
This paper proposes a statistical model for mapping global landslide susceptibility based on logistic regression. After investigating explanatory factors for landslides in the existing literature, five factors were selected for model landslide susceptibility: relative relief, extreme precipitation, lithology, ground motion and soil moisture. When building the model, 70 % of landslide and nonlandslide points were randomly selected for logistic regression, and the others were used for model validation. To evaluate the accuracy of predictive models, this paper adopts several criteria including a receiver operating characteristic (ROC) curve method. Logistic regression experiments found all five factors to be significant in explaining landslide occurrence on a global scale. During the modeling process, percentage correct in confusion matrix of landslide classification was approximately 80 % and the area under the curve (AUC) was nearly 0.87. During the validation process, the above statistics were about 81 % and 0.88, respectively. Such a result indicates that the model has strong robustness and stable performance. This model found that at a global scale, soil moisture can be dominant in the occurrence of landslides and topographic factor may be secondary.
Reference Key
lin2017naturallandslide Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors ;L. Lin;L. Lin;Q. Lin;Q. Lin;Y. Wang;Y. Wang
Journal anziam journal
Year 2017
DOI 10.5194/nhess-17-1411-2017
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.