neuromodulatory effects and targets of the scfas and gasotransmitters produced by the human symbiotic microbiota
Clicks: 241
ID: 181447
2016
Article Quality & Performance Metrics
Overall Quality
Improving Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
Steady Performance
67.4
/100
241 views
193 readers
Trending
AI Quality Assessment
Not analyzed
Abstract
The symbiotic gut microbiota plays an important role in the development and homeostasis of the host organism. Its physiological, biochemical, behavioral, and communicative effects are mediated by multiple low molecular weight compounds. Recent data on small molecules produced by gut microbiota in mammalian organisms demonstrate the paramount importance of these biologically active molecules in terms of biology and medicine. Many of these molecules are pleiotropic mediators exerting effects on various tissues and organs. This review is focused on the functional roles of gaseous molecules that perform neuromediator and/or endocrine functions. The molecular mechanisms that underlie the effects of microbial fermentation-derived gaseous metabolites are not well understood. It is possible that these metabolites produce their effects via immunological, biochemical, and neuroendocrine mechanisms that involve endogenous and microbial modulators and transmitters; of considerable importance are also changes in epigenetic transcriptional factors, protein post-translational modification, lipid and mitochondrial metabolism, redox signaling, and ion channel/gap junction/transporter regulation. Recent findings have revealed that interactivity among such modulators/transmitters is a prerequisite for the ongoing dialog between microbial cells and host cells, including neurons. Using simple reliable methods for the detection and measurement of short-chain fatty acids (SCFAs) and small gaseous molecules in eukaryotic tissues and prokaryotic cells, selective inhibitors of enzymes that participate in their synthesis, as well as safe chemical and microbial donors of pleiotropic mediators and modulators of host intestinal microbial ecology, should enable us to apply these chemicals as novel therapeutics and medical research tools.Reference Key |
oleskin2016microbialneuromodulatory
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | ;Alexander V. Oleskin;Boris A. Shenderov |
Journal | proceedings of the 2017 14th international joint conference on computer science and software engineering, jcsse 2017 |
Year | 2016 |
DOI | 10.3402/mehd.v27.30971 |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.