field observations and results of a 1-d boundary layer model for developing near-surface temperature maxima in the western arctic

Clicks: 120
ID: 176963
2017
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Summer sea ice extent in the Western Arctic has decreased significantly in recent years resulting in increased solar input into the upper ocean. Here, a comprehensive set of 'in situ' shipboard, on-ice, and autonomous ice-ocean measurements were made of the early stages of formation of the near-surface temperature maximum (NSTM) in the Canada Basin. These observations along with the results from a 1-D turbulent boundary layer model indicate that heat storage associated with NSTM formation is largely due to the absorption of penetrating solar radiation just below a protective summer halocline. The depth of the summer halocline was found to be the most important factor for determining the amount of solar radiation absorbed in the NSTM layer, while halocline strength controlled the amount of heat removed from the NSTM by turbulent transport. Observations using the Naval Postgraduate School Turbulence Frame show that the NSTM was able to persist despite periods of intermittent turbulence because transport rates were too small to remove significant amounts of heat from the NSTM layer. The development of the early and late summer halocline and NSTM were found to be linked to summer season buoyancy and wind events. For the early summer NSTM, 1-D boundary layer model results show that melt pond drainage provides sufficient buoyancy to the summer halocline to prevent subsequent wind events from mixing out the NSTM. For the late summer NSTM, limited freshwater inputs reduce the strength of the summer halocline making the balance between interfacial stresses and buoyancy more tenuous. As a result, the late summer NSTM is an ephemeral feature dependent on local wind conditions, while the early summer NSTM is more persistent and able to store heat in the near-surface ocean beyond the summer season.
Reference Key
gallaher2017elementa:field Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors ;Shawn G. Gallaher;Timothy P. Stanton;William J. Shaw;Sung-Ho Kang;Joo-Hong Kim;Kyoung-Ho Cho
Journal heart rhythm
Year 2017
DOI 10.1525/elementa.195
URL
Keywords Keywords not found

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.