classification of plot-level fire-caused tree mortality in a redwood forest using digital orthophotography and lidar

Clicks: 221
ID: 176906
2014
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Aerial and satellite imagery are widely used to assess the severity and impact of wildfires. Light detection and ranging (LiDAR) is a newer remote sensing technology that has demonstrated utility in measuring vegetation structure. Combined use of imagery and LiDAR may improve the assessment of wildfire impacts compared to imagery alone. Estimation of tree mortality at the plot scale could serve for more rapid, broad-scale, and lower cost post-fire assessments than feasible through field assessment. We assessed the accuracy of classifying color-infrared imagery in combination with post-fire LiDAR, and with differenced (pre- and post-fire) LiDAR, in estimating plot percent mortality in a second-growth coast redwood forest near Santa Cruz, CA. Percent mortality of trees greater than 25.4 cm DBH in 47 permanent 0.08 ha plots was categorized as low (<25%), moderate (25%–50%), or high (>50%). The model using Normalized Difference Vegetation Index (NDVI) from National Agricultural Imagery Program (NAIP) was 74% accurate; the model using NDVI and post-fire LiDAR was 85% accurate, while the model using NDVI and differenced LiDAR was 83% accurate. The addition of post-fire LiDAR data provided a modest increase in accuracy compared to imagery alone, which may not justify the substantial cost of data acquisition. The method demonstrated could be applied to rapidly estimate tree mortality resulting from wildfires at fine to moderate scale.
Reference Key
bishop2014remoteclassification Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors ;Brian D. Bishop;Brian C. Dietterick;Russell A. White;Tom B. Mastin
Journal Journal of pharmacological sciences
Year 2014
DOI 10.3390/rs6031954
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.