tomographic reconstruction of atmospheric gravity wave parameters from airglow observations

Clicks: 95
ID: 156814
2017
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Gravity waves (GWs) play an important role in the dynamics of the mesosphere and lower thermosphere (MLT). Therefore, global observations of GWs in the MLT region are of particular interest. The small scales of GWs, however, pose a major problem for the observation of GWs from space. We propose a new observation strategy for GWs in the mesopause region by combining limb and sub-limb satellite-borne remote sensing measurements for improving the spatial resolution of temperatures that are retrieved from atmospheric soundings. In our study, we simulate satellite observations of the rotational structure of the O2 A-band nightglow. A key element of the new method is the ability of the instrument or the satellite to operate in so-called target mode, i.e. to point at a particular point in the atmosphere and collect radiances at different viewing angles. These multi-angle measurements of a selected region allow for tomographic 2-D reconstruction of the atmospheric state, in particular of GW structures. The feasibility of this tomographic retrieval approach is assessed using simulated measurements. It shows that one major advantage of this observation strategy is that GWs can be observed on a much smaller scale than conventional observations. We derive a GW sensitivity function, and it is shown that target mode observations are able to capture GWs with horizontal wavelengths as short as  ∼ 50 km for a large range of vertical wavelengths. This is far better than the horizontal wavelength limit of 100–200 km obtained from conventional limb sounding.
Reference Key
song2017atmospherictomographic Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors ;R. Song;R. Song;M. Kaufmann;J. Ungermann;M. Ern;G. Liu;M. Riese;M. Riese
Journal bioorganic & medicinal chemistry
Year 2017
DOI 10.5194/amt-10-4601-2017
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.