inefficiency of ids static anomaly detectors in real-world networks
Clicks: 195
ID: 146232
2015
A wide range of IDS implementations with anomaly detection modules have been deployed. In general, those modules depend on intrusion knowledge databases, such as Knowledge Discovery Dataset (KDD99), Center for Applied Internet Data Analysis (CAIDA) or Community Resource for Archiving Wireless Data at Dartmouth (CRAWDAD), among others. Once the database is analyzed and a machine learning method is employed to generate detectors, some classes of new detectors are created. Thereafter, detectors are supposed to be deployed in real network environments in order to achieve detection with good results for false positives and detection rates. Since the traffic behavior is quite different according to the user’s network activities over available services, restrictions and applications, it is supposed that behavioral-based detectors are not well suited to all kind of networks. This paper presents the differences of detection results between some network scenarios by applying traditional detectors that were calculated with artificial neural networks. The same detector is deployed in different scenarios to measure the efficiency or inefficiency of static training detectors.
Reference Key |
guillen2015futureinefficiency
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | ;Edward Guillen;Jeisson Sánchez;Rafael Paez |
Journal | journal of polymer materials |
Year | 2015 |
DOI | 10.3390/fi7020094 |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.