momentum forcing of the quasi-biennial oscillation by equatorial waves in recent reanalyses

Clicks: 119
ID: 145326
2015
The momentum forcing of the QBO (quasi-biennial oscillation) by equatorial waves is estimated using recent reanalyses. Based on the estimation using the conventional pressure-level data sets, the forcing by the Kelvin waves (3–9 m s−1 month−1) dominates the net forcing by all equatorial wave modes (3–11 m s−1 month−1) in the easterly-to-westerly transition phase at 30 hPa. In the opposite phase, the net forcing by equatorial wave modes is small (1–5 m s−1 month−1). By comparing the results with those from the native model-level data set of the ERA-Interim reanalysis, it is suggested that the use of conventional-level data causes the Kelvin wave forcing to be underestimated by 2–4 m s−1 month−1. The momentum forcing by mesoscale gravity waves, which are unresolved in the reanalyses, is deduced from the residual of the zonal wind tendency equation. In the easterly-to-westerly transition phase at 30 hPa, the mesoscale gravity wave forcing is found to be smaller than the resolved wave forcing, whereas the gravity wave forcing dominates over the resolved wave forcing in the opposite phase. Finally, we discuss the uncertainties in the wave forcing estimates using the reanalyses.
Reference Key
kim2015atmosphericmomentum Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors ;Y.-H. Kim;H.-Y. Chun
Journal Journal of agricultural and food chemistry
Year 2015
DOI 10.5194/acp-15-6577-2015
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.