Facile NiOx Sol-Gel Synthesis Depending on Chain Length of Various Solvents without Catalyst for Efficient Hole Charge Transfer in Perovskite Solar Cells

Clicks: 225
ID: 14448
2018
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Nickel oxide (NiOx)⁻based perovskite solar cells (PSCs) have recently gained considerable interest, and exhibit above 20% photovoltaic efficiency. However, the reported syntheses of NiOx sol-gel used toxic chemicals for the catalysts during synthesis, which resulted in a high-temperature annealing requirement to remove the organic catalysts (ligands). Herein, we report a facile “NiOx sol-gel depending on the chain length of various solvents„ method that eschews toxic catalysts, to confirm the effect of different types of organic solvents on NiOx synthesis. The optimized conditions of the method resulted in better morphology and an increase in the crystallinity of the perovskite layer. Furthermore, the use of the optimized organic solvent improved the absorbance of the photoactive layer in the PSC device. To compare the electrical properties, a PSC was prepared with a p-i-n structure, and the optimized divalent alcohol-based NiOx as the hole transport layer. This improved the charge transport compared with that for the typical 1,2-ethanediol (ethylene glycol) used in earlier studies. Finally, the optimized solvent-based NiOx enhanced device performance by increasing the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF), compared with those of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)⁻based devices.
Reference Key
kim2018facilepolymers Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Kim, Byung Gi;Jang, Woongsik;Wang, Dong Hwan;
Journal Polymers
Year 2018
DOI DOI not found
URL
Keywords Keywords not found

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.