multiobjective optimized endmember extraction for hyperspectral image

Clicks: 159
ID: 142564
2017
Endmember extraction (EE) is one of the most important issues in hyperspectral mixture analysis. It is also a challenging task due to the intrinsic complexity of remote sensing images and the lack of priori knowledge. In recent years, a number of EE methods have been developed, where several different optimization objectives have been proposed from different perspectives. In all of these methods, only one objective function has to be optimized, which represents a specific characteristic of endmembers. However, one single-objective function may not be able to express all the characteristics of endmembers from various aspects, which would not be powerful enough to provide satisfactory unmixing results because of the complexity of remote sensing images. In this paper, a multiobjective discrete particle swarm optimization algorithm (MODPSO) is utilized to tackle the problem of EE, where two objective functions, namely, volume maximization (VM) and root-mean-square error (RMSE) minimization are simultaneously optimized. Experimental results on two real hyperspectral images show the superiority of the proposed MODPSO with respect to the single objective D-PSO method, and MODPSO still needs further improvement on the optimization of the VM with respect to other approaches.
Reference Key
liu2017remotemultiobjective Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors ;Rong Liu;Bo Du;Liangpei Zhang
Journal Journal of pharmacological sciences
Year 2017
DOI 10.3390/rs9060558
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.