metaheuristics for rich portfolio optimisation and risk management: current state and future trends

Clicks: 212
ID: 142258
2019
Computational finance is an emerging application field of metaheuristic algorithms. In particular, these optimisation methods are becoming the solving approach alternative when dealing with realistic versions of several decision-making problems in finance, such as rich portfolio optimisation and risk management. This paper reviews the scientific literature on the use of metaheuristics for solving NP-hard versions of these optimisation problems and illustrates their capacity to provide high-quality solutions under scenarios considering realistic constraints. The paper contributes to the existing literature in three ways. Firstly, it reviews the literature on metaheuristic optimisation applications for portfolio and risk management in a systematic way. Secondly, it identifies the linkages between portfolio optimisation and risk management and presents a unified view and classification of both problems. Finally, it outlines the trends that have gradually become apparent in the literature and will dominate future research in order to further improve the state-of-the-art in this knowledge area. Keywords: Portfolio optimisation, Risk management, Combinatorial optimisation, Metaheuristics
Reference Key
doering2019operationsmetaheuristics Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors ;Jana Doering;Renatas Kizys;Angel A. Juan;Àngels Fitó;Onur Polat
Journal industrial health
Year 2019
DOI DOI not found
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.