error estimation of pathfinder version 5.3 level-3c sst using extended triple collocation analysis
Clicks: 107
ID: 141086
2020
Article Quality & Performance Metrics
Overall Quality
Improving Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
Emerging Content
0.3
/100
1 views
1 readers
Trending
AI Quality Assessment
Not analyzed
Abstract
Sea Surface Temperature (SST) is an essential climate variable (ECV) for monitoring the state and detecting changes in the climate. The concept of ECVs, developed by the Global Climate Observing System (GCOS) program of the World Meteorological Organization (WMO), has been broadly adopted in worldwide science and policy circles Besides being a climate change indicator, the global SST field is an essential input for atmospheric models, air-sea exchange studies, understanding marine ecosystems, operational weather, and ocean forecasting, military and defense operations, tourism, and fisheries research. It is, therefore, critical to understand the errors associated with SST measurements from both in situ measurements and satellite observations. The customary way of validating a satellite SST is to compare it with in situ measured SSTs. This method, however, will have inaccuracies due to uncertainties involving both types of measurements. A triple collocation (TC) error analysis can be implemented on three mutually independent error-prone measurements to estimate the root-mean-square error (RMSE) of each measurement. In this study, the error characterization for the Pathfinder SST version 5.3 (PF53) dataset is performed using an extended TC (ETC) method and reported to be in the range of 0.31 to 0.37 K. These values are reasonable, as is evident from corresponding very high (~0.98) unbiased signal-to-noise ratio (SNR) values.Reference Key |
saha2020remoteerror
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | ;Korak Saha;Prasanjit Dash;Xuepeng Zhao;Huai-min Zhang |
Journal | Journal of pharmacological sciences |
Year | 2020 |
DOI | 10.3390/rs12040590 |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.