Dose optimization of intra-operative high dose rate interstitial brachytherapy implants for soft tissue sarcoma

Clicks: 353
ID: 13024
2009
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Objective : A three dimensional (3D) image-based dosimetric study to quantitatively compare geometric vs. dose-point optimization in combination with graphical optimization for interstitial brachytherapy of soft tissue sarcoma (STS). Materials and Methods : Fifteen consecutive STS patients, treated with intra-operative, interstitial Brachytherapy, were enrolled in this dosimetric study. Treatment plans were generated using dose points situated at the "central plane between the catheters", "between the catheters throughout the implanted volume", at "distances perpendicular to the implant axis" and "on the surface of the target volume" Geometrically optimized plans had dose points defined between the catheters, while dose-point optimized plans had dose points defined at a plane perpendicular to the implant axis and on the target surface. Each plan was graphically optimized and compared using dose volume indices. Results : Target coverage was suboptimal with coverage index (CI = 0.67) when dose points were defined at the central plane while it was superior when the dose points were defined at the target surface (CI=0.93). The coverage of graphically optimized plans (GrO) was similar to non-GrO with dose points defined on surface or perpendicular to the implant axis. A similar pattern was noticed with conformity index (0.61 vs. 0.82). GrO were more conformal and less homogeneous compared to non-GrO. Sum index was superior for dose points defined on the surface of the target and relatively inferior for plans with dose points at other locations (1.35 vs. 1.27). Conclusions : Optimization with dose points defined away from the implant plane and on target results in superior target coverage with optimal values of other indices. GrO offer better target coverage for implants with non-uniform geometry and target volume.
Reference Key
swamidas2009dosejournal Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Swamidas, Jamema;Pramod, Sharma;Dayananda, Sharma;Siddhartha, Laskar;Deepak, Deshpande;Shyam, Shrivastava;
Journal journal of cancer research and therapeutics
Year 2009
DOI DOI not found
URL
Keywords Keywords not found

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.