Covalently Conjugated Gold–Porphyrin Nanostructures

Clicks: 230
ID: 114394
2020
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Gold nanoparticles show important electronic and optical properties, owing to their size, shape, and electronic structures. Indeed, gold nanoparticles containing no more than 30–40 atoms are only luminescent, while nanometer-sized gold nanoparticles only show surface plasmon resonance. Therefore, it appears that gold nanoparticles can alternatively be luminescent or plasmonic and this represents a severe restriction for their use as optical material. The aim of our study was the fabrication of nanoscale assembly of Au nanoparticles with bi-functional porphyrin molecules that work as bridges between different gold nanoparticles. This functional architecture not only exhibits a strong surface plasmon, due to the Au nanoparticles, but also a strong luminescence signal due to porphyrin molecules, thus, behaving as an artificial organized plasmonic and fluorescent network. Mutual Au nanoparticles–porphyrin interactions tune the Au network size whose dimension can easily be read out, being the position of the surface plasmon resonance strongly indicative of this size. The present system can be used for all the applications requiring plasmonic and luminescent emitters.
Reference Key
spitaleri2020nanomaterialscovalently Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Luca Spitaleri;Chiara M. A. Gangemi;Roberto Purrello;Giuseppe Nicotra;Giuseppe Trusso Sfrazzetto;Girolamo Casella;Maurizio Casarin;Antonino Gulino;Spitaleri, Luca;Gangemi, Chiara M. A.;Purrello, Roberto;Nicotra, Giuseppe;Trusso Sfrazzetto, Giuseppe;Casella, Girolamo;Casarin, Maurizio;Gulino, Antonino;
Journal nanomaterials
Year 2020
DOI 10.3390/nano10091644
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.