Multiple Classifier System for Remote Sensing Image Classification: A Review
Clicks: 196
ID: 113063
2012
Article Quality & Performance Metrics
Overall Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
0.0
/100
0 views
0 readers
AI Quality Assessment
Not analyzed
Over the last two decades, multiple classifier system (MCS) or classifier ensemble has shown great potential to improve the accuracy and reliability of remote sensing image classification. Although there are lots of literatures covering the MCS approaches, there is a lack of a comprehensive literature review which presents an overall architecture of the basic principles and trends behind the design of remote sensing classifier ensemble. Therefore, in order to give a reference point for MCS approaches, this paper attempts to explicitly review the remote sensing implementations of MCS and proposes some modified approaches. The effectiveness of existing and improved algorithms are analyzed and evaluated by multi-source remotely sensed images, including high spatial resolution image (QuickBird), hyperspectral image (OMISII) and multi-spectral image (Landsat ETM+).Experimental results demonstrate that MCS can effectively improve the accuracy and stability of remote sensing image classification, and diversity measures play an active role for the combination of multiple classifiers. Furthermore, this survey provides a roadmap to guide future research, algorithm enhancement and facilitate knowledge accumulation of MCS in remote sensing community.
Reference Key |
du2012sensorsmultiple
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Peijun Du;Junshi Xia;Wei Zhang;Kun Tan;Yi Liu;Sicong Liu;Du, Peijun;Xia, Junshi;Zhang, Wei;Tan, Kun;Liu, Yi;Liu, Sicong; |
Journal | sensors |
Year | 2012 |
DOI | 10.3390/s120404764 |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.