Portable Automated Surveillance of Surgical Site Infections Using Natural Language Processing: Development and Validation.

Clicks: 247
ID: 109580
2020
We present the development and validation of a portable NLP approach for automated surveillance of SSIs.The surveillance of SSIs is labor-intensive limiting the generalizability and scalability of surgical quality surveillance programs.We abstracted patient clinical text notes after surgical procedures from 2 independent healthcare systems using different electronic healthcare records. An SSI detected as part of the American College of Surgeons' National Surgical Quality Improvement Program was used as the reference standard. We developed a rules-based NLP system (Easy Clinical Information Extractor [CIE]-SSI) for operative event-level detection of SSIs using an training cohort (4574 operative events) from 1 healthcare system and then conducted internal validation on a blind cohort from the same healthcare system (1850 operative events) and external validation on a blind cohort from the second healthcare system (15,360 operative events). EasyCIE-SSI performance was measured using sensitivity, specificity, and area under the receiver-operating-curve (AUC).The prevalence of SSI was 4% and 5% in the internal and external validation corpora. In internal validation, EasyCIE-SSI had a sensitivity, specificity, AUC of 94%, 88%, 0.912 for the detection of SSI, respectively. In external validation, EasyCIE-SSI had sensitivity, specificity, AUC of 79%, 92%, 0.852 for the detection of SSI, respectively. The sensitivity of EasyCIE-SSI decreased in clean, skin/subcutaneous, and outpatient procedures in the external validation compared to internal validation.Automated surveillance of SSIs can be achieved using NLP of clinical notes with high sensitivity and specificity.
Reference Key
bucher2020portableannals Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Bucher, Brian T;Shi, Jianlin;Ferraro, Jeffrey P;Skarda, David E;Samore, Matthew H;Hurdle, John F;Gundlapalli, Adi V;Chapman, Wendy W;Finlayson, Samuel R G;
Journal annals of surgery
Year 2020
DOI 10.1097/SLA.0000000000004133
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.